Home

Site Map

Search

applet,
                    roots, quadratic equation, solution, roots, Carlyle,
                    Lill, Euclid, solutions, Lill, Carlyle circle,
                    geometric solution
GeoAstro
Applets

Astronomy
applet,
                  roots, quadratic equation, solution, roots, Carlyle,
                  Lill, Euclid, solutions, Lill, Carlyle circle,
                  geometric solution
Chaos Game
applet,
                    roots, quadratic equation, solution, roots, Carlyle,
                    Lill, Euclid, solutions, Lill, Carlyle circle,
                    geometric solution
Java
Java applet,
                  mathematics, quadratic equations
Miscel-

laneous
Java applet,
                    mathematics, quadratic equations
Physics Quiz
Java applet,
                  mathematics, quadratic equations
Who is
Who ?

Geometric Solutions of Quadratic Equations

1. Euclid's Method

euclid


Quadratic equation: x2 + px + q = 0

Example: coefficients p=4.5, q=2, solved by the roots x1=-0.5, x2=-4

Applet


2. Carlyle's Method


Carlyle Circle

Quadratic equation: x2 + px + q = 0

Example: coefficients p=2.5, q=-1.5 solved by the roots x1=0.5, x2=-3

Applet


3. Von Staudt's Method

von Staudt
                roots of quadratic equations

Applet


4. Kumar's Method


kumar solving
          quadratic equations

Quadratic equation: x2 + px + q = 0

Example: coefficients p=3, q=2 solved by the roots x1=-1, x2=-2

Applet


Web Links

Lill's method (Wikipedia)

Geometric Construction of Roots of Quadratic Equation (Cut The Knot)

Eduard Lill, radici immaginarie di un polinomio

Der Kreis von Lill, in: R. Kaendes, R. Schmidt (Hrsg.): Mit GeoGebra mehr Mathematik verstehen (Google Books)

Carlyle Circle (Wolfram MathWorld)

Carlyle Circle (Wolfram Demonstrations Project)

Applet showing Lill's method applied to quadratic equations

D. Tournès: Constructions d'équation algébriques et différentielles

T. C. Hull: Solving Cubics With Creases: The Work of Beloch and Lill (PDF)

M. E. Lill: Résolution Graphique des équations numériques de tous les degrées à une seule inconnue, et description d'un instrument inventé dans ce but, Nouvelles Annales de Mathematiques, Series 2, Vol. 6, 1867 ( PDF)

D. W. DeTemple: Carlyle Circles and the Lemoine Simplicity of Polygon Constructions (PDF)

Thomas Carlyle (MacTutor)

Felix Klein: Famous Problems of Elementary Geometry, 1941, p. 34f (Google Books)

Print

R. Kaendes, R. Schmidt (Hrsg.): Mit GeoGebra mehr Mathematik verstehen, Vieweg+Teubner, 2011, ISBN 978-3-8348-1757-0.

A. Baeger: Eine geometrische Lösung der quadratischen Gleichung x2 + px + q = 0, in: CASIO Forum 1/2012, CASIO Europe.

E. J. Barbeau: Polynomials, Springer New York Heidelberg Berlin 2003, ISBN 0-387-40627-1, 978-0387-406275.

E. John Hornsby: Geometrical and Graphical Solutions of Quadratic Equations, The College Mathematics Journal, 1990, Volume 21, Number 5, p. 362-369
.

Arun Kumar: A new technique of solving quadratic equations, Journal of Recreational Mathematics, Vol 14(4), 1981-82, pp 266-270.

Howard Eves: An Introduction to the History of Mathematics, Saunders College Publishing, 6th ed. 1990, Chapter 3-7 (pp 87-90, 99).





Updated: 2012, Apr 10