|
GeoAstro Applets |
Astronomy |
Chaos Game |
Java |
Miscel- laneous |
The Scottish
historian and writer Thomas Carlyle (1795-1881)
devised an elegant geometrical solution to quadratic
equations, based on the "Carlyle circle".
x2
+ px + q = 0
The circle with the segment joining the points (0|1) and (p|q) as diameter is intersecting the p-axis, and the abscissae of these ponts of intersection are the required roots of the quadratic equation. In 1867 by the Austrian captain of engineering Eduard Lill published a visual method of finding the real roots of polynomials of any degree. |
Checking the box will
mark certain points (p|q): - p and q are multiples of the raster size, and - the roots x1 and x2 are multiples of the raster size. |
|
Select the
raster size, or a continuous mode ("Raster off"). A table of p, q, x1, x2 is available by "Data Window". |
|
Geometric
Construction of Roots of Quadratic Equation (Cut
The Knot) Carlyle
Circle (Wolfram MathWorld) Carlyle Circle (Wolfram Demonstrations Project) Applet
showing Lill's method applied to quadratic
equations D. Tournès:
Constructions d'équation algébriques et
différentielles T.
C. Hull: Solving Cubics With Creases: The Work of
Beloch and Lill (PDF) D. W.
DeTemple: Carlyle Circles and the Lemoine
Simplicity of Polygon Constructions (PDF) |
R. Kaendes, R. Schmidt (Hrsg.): Mit GeoGebra mehr Mathematik verstehen, Vieweg+Teubner, 2011, ISBN 978-3-8348-1757-0. A. Baeger: Eine geometrische Lösung der quadratischen Gleichung x2 + px + q = 0, in: CASIO Forum 1/2012, CASIO Europe. E. J. Barbeau: Polynomials, Springer New York Heidelberg Berlin 2003, ISBN 0-387-40627-1, 978-0387-406275. E. John Hornsby: Geometrical and Graphical Solutions of Quadratic Equations, The College Mathematics Journal, 1990, Volume 21, Number 5, p. 362-369. |