|
GeoAstro Applets |
Astronomy |
Chaos Game |
Java |
Miscel- laneous |
Random Walk Applet
1 dimension: The blue point is moving on a line with integer coordinates: The 2 directions of a single step: x+1, x-1 2 dimensions: The blue point is moving in a plane with integer coordinates: The 4 directions of a single step: x+1, x-1, y+1, y-1 |
select from the menu |
|
button starting a single walk, maximum of n=1000 steps, the diagram at the bottom is showing the distances d(n) button to stop the walk |
1 dimension:
An interesting question arising in the
study of random walks concerns
the probability of returning to the initial position
(origin, "equalization").
The probability P(n) of return to origin at step n (n even) is:
For large n (even):
Graph of the first (strict) formula:
---
Applet results:
The total number of
returns to origin (within a fixed number n of steps) is
proportional
to the number N of walks:
The probalibity for n=100 steps is 0.076
2
dimensions:
Example:
button starting a set of N walks |
|
the numbers of steps and walks can be selected from the menus |
Books |
Küppers, Bernd-Olaf: Die Berechenbarkeit
der Welt, Grenzfragen der exakten Wissenschaften. S.
Hirzel, Stuttgart 2012. Entropie und Zeitstruktur, S. 200-210 Eigen, Manfred, and Winkler, Ruth: Das Spiel, Naturgesetze steuern den Zufall. Pieper, München 1975. Kapitel 4:Statistische Kugelspiele |
|
Random
Walk--1-Dimensional (Wolfram MathWorld) Random Walk--2-Dimensional (Wolfram MathWorld) A 1D Random Walk Visits The Origin Infinitely Often |
Updated: 2023, Oct 06