Jede natürliche Zahl n läßt sich eindeutig als Summe von Vielfachen von Potenzen einer bestimmten Basis b darstellen, wobei die Koeffizienten (Faktoren vor den Potenzen) kleiner als b sind:
In der Stellenwert-Schreibweise steht der Koeffizient der höchsten Potenz zuerst: ...EDCBA. Umgekehrt ist durch jede solche Darstellung genau eine natürliche Zahl n bestimmt.
1. Dezimalsystem: Basis b=10 (A, B, C, D, E,.. liegen zwischen 0 und 9)
Beispiel:
2. Dualsystem: Basis b=2 (A, B, C, D, E, ... sind 0 oder 1)
Beispiele: 101012 = 1·24 + 0·23 + 1·22+ 0·21+ 1·20 = 1·16 + 0·8 + 1·4 + 0·2 + 1·1 = 2110 Um eine Dezimalzahl in eine Dualzahl umzuwandeln, subtrahiert man fortgesetzt die höchstmögliche Zweier-Potenz. Beispiel: 43
Die
duale Darstellung läßt sich auch nach
folgendem Verfahren bestimmen:
man
teilt die Dezimalzahl fortgesetzt durch 2 und
schreibt den Divisionsrest von oben nach unten auf.
Am Schluß kippt man die erhaltene Spalte nach
rechts und erhält die gesuchte
Dualzahl.
Beispiel:
Verwandle
197810 in eine Dualzahl !
1978
:2
Rest 0
= 989
:2
Rest 1
= 494
:2
Rest 0
= 247
:2
Rest 1
= 123
:2
Rest 1
= 61
:2
Rest 1
= 30
:2
Rest 0
= 15
:2
Rest 1
= 7
:2
Rest 1
= 3
:2
Rest 1
= 1
Rest 1
3. Hexadezimalsystem: Basis b=16 Jeder Stelle im hexadezimalen Stellensystem ist eine Sechzehner-Potenz zugeordnet. mit 0 < a, b, c, d, e,..... < 16 Im Hexadezimalsystem werden 16 Ziffern benötigt. Hierzu verwendet man die 10 Ziffern 0 bis 9 und die 6 Buchstaben A (=10), B (=11), C (=12), D (=13), E (=14) und F (=15). Beispiele: a) Verwndle A24F16 in eine Dezimalzahl b) Verwandle 41 51110 in eine Hexadezimalzahl
c) Verwandle 68 65110 in eine Hexadezimalzahl
Aufgabe 1: gib als Dualzahl an: a) 23 b) 145 c) 698 d) 2537 Aufgabe 2: gib als Dezimalzahl an: a) 1010 b) 110011 c) 10101100 d) 111000111 Aufgabe 3: Wie lautet die größte Dezimalzahl, die sich mit einer a) 12-stelligen b) 20-stelligen Dualzahl darstellen läßt ?
|