|
GeoAstro Applets |
Astronomy |
Chaos Game |
Java |
Miscel- laneous |
Hollow Earth Applet
Transformation by Circle Inversion
There are some people believing that we live
in the interior of a hollow earth and that the universe itself lies within ("concave hollow-Earth hypothesis").
Cyrus Reed Teed proposed this idea in 1869.
P' is the inverse of P
with respect to the inversion circle, center O,
radius R. OP * OP' = R2 which follows from similar triangles: OP : R = R : OP' Using rectangular coordinates formulae of the transformation from P(x,y) to P'(x',y') are:
|
Instructions
for use:
To change the center of the inversion circle
check the box "Earth Center" and click. |
|
Check the box "Earth Radius" and click to set the radius of the inversion circle. | |
Check the boxes then
draw a single point (A), or a line (AB), or a triangle
(ABC) by clicking. |
|
Check the box to see
the lines connecting the points. |
|
To draw a circle check
the box "Circle Center" and click, then check
"Circle Radius" and click to change the radius. |
|
Select items from the
"Details" menu. |
|
Two points (A, B) or a
circle selected will enable the "Motion Options" menu.
Choose "Run" to start the animation. The uniform speed along the original straight line AB and along the circle is set to unity. |
Some
examples:
line > arc of a circle |
arc of a circle > line |
circle <> circle |
|
triangle |
triangle |
The transformation is angle preserving. Select the item "Triangle Angles" from the "Details" menu. The angle sum (α+β+γ) of the transformed triangle is also 180°: |
|
The visible region of an observer at P is the white circle, the circumference (horizon) passing the center of the "hollow Earth". |
|
The pink region of a geocentric sphere, as seen by an observer P, is transformed to the blue region inside the Earth. |
|
The ratio of the radii r/r is equal to the ratio OM/OM'. (The image point M' of M is not the center of the image circle!) |
|
If AB is inside the
Earth, the length of the arc A'B' is greater than
the length of the straight line AB.
|
|
The ratio of the
velocities of the moving points is inverse to the
ratio of their distances from the center O. |
A solid proof of the the Hollow
Earth Theory:
the
bend of my shoe sole.
|
Inversive
geometry (Wikipedia) Turning the Universe Inside-Out. What
Curiosity in the Structure: The Hollow Earth
in Science Inversion:
Reflection in a Circle: What is it? Turning the
Universe Inside-Out Leben wir auf der Innenfläche einer Hohlkugelerde? (H. Diehl) Roman U. Sexl:
Die Hohlwelttheorie Kuriose Theorie: Verkehrte Welt (SPIEGEL ONLINE) Pseudowissenschaft entlarvt: Die Hohle
Erde Theorie - Leben wir auf einer Kugelschale?
(M. Haas) |
Books and
Articles |
Johannes
Lang: Die Hohlwelttheorie. Schirmer & Mahlau, Frankfurt 1938. Norbert Treitz: Das Äußerste nach innen gekehrt. Spektrum der Wissenschaft Dossier 5/10: Physikalische Unterhaltungen. Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg 2010. Norbert Treitz: Das Äußerste nach innen gekehrt. Spektrum der Wissenschaft, Heft 2/2008, S. 46-49, Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg 2008. Matthias Marschik (Hrsg.): Das Weltall, wie es wirklich ist - Dolan-Theorie, Turia & Kant, Wien 1999. Dianne Robbins: Messages from the Hollow Earth, Trafford Publishing, 2006, ISBN 978-1412005296. |
©
2010-2023 J. Giesen
Modified:
2023, Oct 03